x^2+111x+3080.25=104000

Simple and best practice solution for x^2+111x+3080.25=104000 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2+111x+3080.25=104000 equation:



x^2+111x+3080.25=104000
We move all terms to the left:
x^2+111x+3080.25-(104000)=0
We add all the numbers together, and all the variables
x^2+111x-100919.75=0
a = 1; b = 111; c = -100919.75;
Δ = b2-4ac
Δ = 1112-4·1·(-100919.75)
Δ = 416000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{416000}=\sqrt{6400*65}=\sqrt{6400}*\sqrt{65}=80\sqrt{65}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(111)-80\sqrt{65}}{2*1}=\frac{-111-80\sqrt{65}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(111)+80\sqrt{65}}{2*1}=\frac{-111+80\sqrt{65}}{2} $

See similar equations:

| 11.3+12.8=7.5x+35.8 | | 5x=2(1-x)=2(2x-1) | | 2(t-5)-3(3t-2)=9-5(5t+4) | | 8=6z | | (u+5)^2+6=56 | | 5x+10+10=180 | | (x+2)(x+6)-12=0 | | 3y+11+7y-5=180 | | 8=z6 | | 5.2x+1225=27.04+35x | | 40/12.20=x | | 2/5x+19=1/5x21 | | 3(4x-1)-2(5x-3)+3x=-1-2x | | F(x)=4x^3-2x+7 | | 1000-1200x=1500+1175x | | -7-8=4x+3-3x | | Y=-8x+1/2 | | 50+x+x+30=180 | | 1/5h=2 | | 3/5(x)=6 | | 2m+3-9=-22 | | -3x-5x-4=2x+12 | | x^+4x=5 | | 3+6x+4x=-7 | | 3g+3(-6+3g=1-g | | 33/5=t+21/2 | | 2/3(a+3)=5/3a-19 | | -243=-9(10+3w | | 8/9y-19=13 | | 3x-2+2x-8=90 | | 8=z÷6 | | 30x-6x^2=12 |

Equations solver categories